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ABSTRACT: 

In this paper, a fast Hankel transform methodology and architecture based on a filtered back-projection 

method is provided. Hankel transform is required in many applications and if it is computationally intensive, a 

dedicated hardware and hence architecture is required (especially in real time applications). The Hankel 

transform is broken into a Fourier transform, followed by an integration (back projection) operation. The 

Fourier transform can be solved by a fast Fourier transform block requiring O(Nlog2N) computation time. 

However, the integration operation takes O(N
2
) complexity. In the latter, the delay is due to complex 

exponential multiplications. This can be solved in much reduced time by CORDIC algorithm which is the 

paper‟s main subject. It is shown that the error introduced by CORDIC is small compared to the method‟s 

inherent error. Also here, since all the components are uniformly scaled by CORDIC, the scale factor 

compensation is not required. The method has been designed in MATLAB in bit-level and tested with known 

input functions. The architecture following from the methodology has been explained. Agreement with 

theoretical values has been obtained. The method has been used in a computed tomography application as a 

case study. Extension to voxel based reconstructions has also been shown.   

 

INDEX TERMS: Hankel transform, Back-projection method, CORDIC algorithm, Architecture, Computed 

tomographic system.  
 

I. INTRODUCTION: 

ANKEL transforms arise in applications some of which include computed tomography [1], adaptive optics 

[2], and radar applications [3]. In many of these applications [2,4], the computational burden is extremely high 

and a dedicated hardware is necessary (especially for real time applications). In this paper, we propose a fast 

methodology (basically reducing the computation time of a particular section that has the  

largest time complexity) and architecture for computing Hankel transforms that is based on the back-

projection method and can be used to compute integral transforms of any order.The algorithm is based on [5] 

which breaks the Hankel transform into a Fourier transform, which can be efficiently solved by fast Fourier 

transform (FFT) block in O(Nlog2N) time, and an integration (back-projection) operation. The back-

projection operation requires O(N
2
) computation time (most computationally intensive operation), where N is 

the number of input samples. Complex exponential multiplications are performed inside the backprojection 

operation.  

One solution is to use multipliers. The multiplier delay is proportional to the number of bits in the word times 

the word-length-adder delay which is high for computationally intensive systems (e.g. 64-bit system). Array 

multipliers occupy huge area and so are inefficient for usage. Instead of using multipliers (which has been used 

in all the previous works), the complex exponential multiplications can be efficiently performed by the 

coordinate rotation digital computer (CORDIC) method [6]. Here, the angles need not be stored. Also the 
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delay is independent of the bit length, in fact lesser, say 10 times the word-length-adder delay, which makes it 

faster than the multiplier counterpart. The CORDIC block however introduces more errors in the computed 

product than multipliers. It is shown that the error introduced by the CORDIC block is much less compared to 

the inherent error sources of the back-projection method. Hence performance improvement by CORDIC is 

possible. Another improvement in computation time is possible because unlike in an FFT, all components are 

multiplied by the CORDIC scale factor and hence scale factor compensation block is not necessary (e.g. 

image processing applications, all pixels are scaled by the same factor).  

The rest of the paper is organized as follows: In Section II literature review of different Hankel transform 

methods is provided to show that the used method is the fastest. The modification of the methodology to 

incorporate the CORDIC section and its architecture is presented in Section III together with the error 

analysis. In Section IV the results when testing with known input function is provided. In Section V, the 

application of the methodology in reconstructing a 2-d cross-section of a 3-d object with good peak signal to 

noise ratio (PSNR) figures (>50 dB) at reduced computation time is shown and effect of non-idealities (viz. 

noisy inputs) analyzed. Extension to voxel based reconstruction is shown. The conclusion is presented in 

Section VI.  

 

II. LITERATURE REVIEW OF HANKEL TRANSFORMS METHODS: 

Direct application of numerical quadrature is computationally intensive and requires storage of a large number 

of Bessel functions. The exponential change of variables proposed by Siegman [7] is fast, however requires 

exponential sampling which can give rise to large errors for fast changing functions. The asymptotic method 

[8] also produces large errors for small values of the transformed variable. Much of the Hankel transform 

literature is based on the projection theory. Two types of sub-methods are present. One is the forward 

projection and the other is the back-projection.  

Oppenheim et al. have developed a forward projection method [9], however its computation complexity is 

high of the O(N
2
). Mook [10] and Hansen [11] have developed efficient algorithms for forward projection 

methods, however it is for the zeroth order only in which the Chebyshev transform reduces to the Abel 

transform. Among the back-projection methods, Candel [12] has made significant headway. His work was 

extended to higher orders by Higgins and Munson [5]. They further used symmetry conditions to reduce the 

number of computations by two. Here, the Hankel transform is broken into a FFT filtered by the input variable 

followed by integration (back-projection) over the angular limits. The FFT takes O(Nlog2N) time while the 

integration requires O(N
2
) time. Since some of the computation is performed by the FFT, the overall time is 

reduced. Suter‟s [13] algorithm produces comparable operation count with Higgins and Munson‟s [5], 

however, it is forward projection based method (Chebyshev transform followed by a Fourier transform). 

Other recent methods [14-15] have focused on zeroth order transform. Knockaert [16] has given O(Nlog2N) 

algorithm for zeroth order transforms via Mellin‟s approach. The work in [17] finding the Hankel transform 

using Haar wavelets has high complexity. The fast Hankel transform algorithms in [18-19] for calculating 

electric field‟s Green‟s function in microstrip antennas is similar to Siegman, in that it requires exponential 

sampling and hence for fast changing functions can give rise to large errors. Hence from the above review, it 

is found that Higgins and Munson‟s method [5] is the best (in terms of computation time) and is chosen as the 

starting method for the work. According to [5], Hankel transform (fn(ρ)) of a function(Fn(r)) can be written 

as: 
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In digital applications, (1-3) are broken into discrete form. The number of angles between 0 to π/2 in (2) can 

be chosen to be less than the number of data points which reduces the computation burden somewhat. In 

discretized form, equations (1-3) can be written as: 

 








12

0

)2/2(

2
)()()(

4
)(

P

l

Pilj
lnin elWllinrF

r 




                   (4) 

 

P is the number of samples of Φn(η) and, 
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T is the number of samples of Fn(r)  
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W(.) is a suitable window like Hamming, Hanning and so on. 

 

























1

0

1

0

)],(Im[),(2

)],(Re[),(2

)(
S

k

I
n

S

k

I
n

mn

knexmkj

knexmk

f





         

n

n

odd

even      (7) 

 

S is the number of samples of θ from 0 to π/2 with deviation Δθ  and ex(n,k)=exp(-j[πn(k+.5)/2S])] and 

)m,k(I
n  corresponds to an interpolated version of )sin( kmn  . The modified input function (3) is multiplied 

by lin(l) (6) and then undergoes an FFT process in (4) to obtain samples of Φn(η) which are then integrated 

according to (7) to obtain samples of the Hankel transform fn(ρ).  

 

III. METHODOLOGY, ARCHITECTURE AND ERROR ANALYSIS: 

There are two parts to the architecture; the FFT section and the integration section. The detail of each section 

is explained as follows: 

A. FFT BLOCK 
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The FFT section implements the Fourier transform via the radix-2 decimation in frequency (DIF) process 

[20]. Initially (5) and (6) are multiplied and the data is stored in memory. The data is then read out, complex 

exponential multiplication is performed by multipliers according to the FFT butterfly operation and the results 

are written back. The „sin‟ and „cos‟ values that represent the complex exponential of the twiddle factor are 

stored in look up table (LUT) from where they are read out for multiplication. The address references for a 

256 point DIF radix-2 FFT (first two stages) are shown in Fig. 1 which is novel and directly mappable to 

hardware architecture for real time applications.  

  
Fig. 1 Address references for first two stages of a 256 point radix 2 DIF FFT 

 

In Fig. 1, the two adjacent numbers represent the addresses of the two elements involved in butterfly 

operation. From architectural point of view, they are the output of a 7-bit counter with a 0 or 1 (0 for the first 

element of the pair in butterfly operation and 1 for the second element) whose position depends on the stage 

number starting from the msb side. It can be implemented by a 7-bit counter and a set of multiplexers 

(MUXes). The angles are in arithmetic progression with a common difference of 2
stagenumber

. Hence the stage 

counter output after passing through a decoder is fed to the accumulator, whose output serves as the address 

for reading the „sin‟ and „cos‟ values of the required twiddle factor. The overall FFT structure is shown in Fig. 

2. 
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Fig.2 Architecture of the FFT block 

 

In Fig. 2, initially, data is read from the memory, and the results of the intermediate stages are stored in 

scratch pad memory. Finally the results are written back to the memory. The address and angle generation 
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blocks generate the input arguments to the butterfly unit that computes the twiddle factor multiplication. The 

later is derived from the address generation block itself as mentioned before. 

 

B.THE INTEGRATION BLOCKS:  

The method used is numerical quadrature. The integration block performs a set of sequential operations 

according to (7), which is basically the complex multiplications (performed by CORDIC) on the output of 

FFT operations (stored in memory), and then summations to obtain the result for different values of the 

transformed variable. In architecture, the sequence is carried out by a one-hot decoder that can be realized by 

a counter followed by a decoder. Initially, in memory, the set of values of Δρsinθk for k =0 to S-1 is stored 

(say R). The angle is represented with positional weights from π, π/2, …, π/2
n
. This technique helps in 

encoding the angles in binary sequence. In another register (say Q), the value of nΔθ is stored with n being the 

order of the Hankel transform. Another set of S memory locations (say R1) is cleared. The steps are carried 

out in the following manner: 

1. A counter (say i) is cleared to zero 

2. Two registers (say S1 and N) are cleared to zero 

3. A counter (say j) is cleared to zero 

4. Memory location j in R1 is read out 

5. To this value, 0.5 is added and the integer portion is used to reference the value of Φ() (i.e. the FFT output 

through nearest neighborhood interpolation) 

6. The value is fed to a CORDIC block (the real part first, then the imaginary part) with the angle argument as 

N 

7. At the same time, N is added with Q and the value is stored back in N. Also R1(j) is added with R(j) and 

the result is stored back in R1(j) 

8. Depending on n, the sine and cosine outputs are taken (by MUX) and the result is added with S1 

9. Increment j by 1  and repeat from iv. otherwise if terminal count of j is reached then write the content of S1 

to memory , increment  i and repeat from ii. If i has reached terminal count then stop the process.   

 

The CORDIC processor works in forward rotation mode. The angle can be any value from 0 to 2π, and hence 

depending on the quadrant, the angle is complemented (subtracted from π/2) as well as the final output is 2‟s 

complemented. The 4-quadrant CORDIC follows a similar architecture mentioned in [20]. However, since 

each individual data value in the numerical quadrature of (7) is scaled by the same factor, the scale factor 

compensation is not required which simplifies the architecture compared to [20], and reduces the total number 

of iterations performed. Computation time can be improved further by selecting complex but fast adders like 

conditional sum adder [21] (to implement the add/sub operation inside CORDIC) that reduce the carry 

propagation time to logarithmic order.  Schematic of a 4-bit conditional sum adder is shown in Fig. 3. 

 

 
Fig. 3 Schematic of 4-bit conditional sum adder 
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However, the CORDIC introduces its own error (which is now shown to be less than the method‟s inherent 

error). Since the scale factor computation is not present, the main error sources are the angle approximation 

errors and the truncation errors [22]. The mean square error (MSE) for angle approximation (Eang) is given 

for cosine and sine cases respectively as : 

 

)sin().0(.  vEang                                                  (8a) 

 

)cos().0(.  vEang                                                    (8b) 

In (8), δ is the final residual angle, v(0) is the input vector and β is the rotated angle. The expression is a slight 

modification from [22]. The MSE for bit truncation is similarly given as (Etrun): 
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In (9), wv(i) is the variance of truncation error at the ith stage from 0 to N
‟
-1 (N

‟ 
is the number of stages in the 

CORDIC block) ; P(i) is the micro-rotation vector at ith stage given by 
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is the square root of the sum of squares of (8) and (9). However, for large bit lengths, the truncation error is 

much less than the angle error and is not considered . In the integration step of [5], there are S additions. 

Usually the CORDIC angle errors are uncorrelated and the power terms are added. However due to small 

value of S (about 128), the cross correlation terms may not cancel fully and the square of the sum of errors is 

taken (if the square is not taken, the sum denotes the mean error). This is finally multiplied by 2Δθ. Finally the 

square root of the mean of the squares of the errors of each transformed value gives the final root mean 

square error of the system relative to the multiplier based system.  The error of the Hankel transform method 

[5] in approximating (2) by midpoint integration rule, for n even and n odd is respectively given as: 
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Differentiating (10), 2 times w.r.t. θ, gives the quadrature error for a given order to be proportional to ρ
2
. 

Now, considering the proportionality constant to be 0.5 (heuristically) for both cases, the average error (eavg) 

for both n even and odd can be approximately written as : 
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In (11), Δρ is the transformed variable sample deviation, and L is its number of samples.    
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IV. RESULTS 

 

To test the CORDIC error relative to the error of the transform algorithm, the sinc function is employed of 

the form sin(ar)/ar, where a=2/(3Δr) with Δr=1 , which has a well defined Hankel transform given in [5]. The 

results for n=6 is shown in Fig. 4. Some values are shown in Table I. The CORDIC used is a 8-stage one with 

data width 40 bits (16 bits before decimal point, 24 bits after; 2‟s complement representation used). The 

number of input samples is 256 and the number of samples of the transformed variable is 128. The value of S 

in (7) is also 128. Δρ=2Δθ=2π/256; Δr=1;Δη=0.0123. 
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Fig. 4 Exact (analytical), computed using multipliers and computed using CORDIC (8 stages) 6

th
 order 

Hankel transforms for sinc function 

 

Table I : Some representative values of Hankel transform of sinc function (n=6) from Fig. 4 

 

Sample 

No. 

Value 

(exact 

transform) 

Value (by 

multipliers)  

Value (by 8-

stage 

CORDIC) 

0 0 0.0004 0.0004 

4 0 0.0404 0.0405 

18 -0.0008 0.0162 0.0163 

24 -0.0214 0.0246 0.0246 

38 -0.2150 -0.2829 -0.2822 

46 -0.0932 -0.1133 -0.1127 

53 -0.0109 -0.0324 -0.0325 

67 0.0556 -0.0297 -0.0298 

78 0.0662 0.0439 0.0445 

95 0.0620 0.0994 0.0996 

  

From Fig. 4, it is observed that the error with the use of CORDIC is minimal compared to the error of the 

algorithm. The square root of the mean square error between the ideal and computed using multipliers is 

0.0554 while that between multipliers and CORDIC is 0.000455. The ratio is 121.76. The theoretical error 

between exact and computed using multipliers is  0.1076. The simulated result of the error between the exact 

transform and computed using multipliers is lesser than its theoretical value as a conservative condition had 

been considered for the latter, however, they are of the same order.  The theoretical CORDIC error is 

0.000458 which matches closely with simulation. It also shows that the CORDIC truncation errors are much 
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less than the angle error.  The results for the 9
th
 order transform are shown in Fig. 5 and Table II. 

0 20 40 60 80 100 120 140
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T
ra

n
sf

o
rm

 v
a

lu
e

Samples

 

 

Exact transform

Transform using multipliers

Transform using CORDIC

 

 
 

Fig. 5 Exact (analytical), computed using multipliers and computed using CORDIC (8 stages) 9
th

 order 

Hankel transforms for sinc function 

 

Table II : Some representative values of Hankel transform of sinc function (n=9) from Fig. 5 

 

Sample 

No. 

Value 

(exact 

transform) 

Value (by 

multipliers)  

Value (by 

8-stage 

CORDIC) 

0 0 0 0 

4 0 0.0030 0.0030 

18 0 0.0141 0.0142 

24 0 0.0474 0.0475 

38 0.2965 0.2174 0.2179 

46 -0.1546 -0.0946 -0.0950 

53 -0.2220 -0.1830 -0.1833 

67 -0.0960 -0.0463 -0.0474 

78 -0.0083 -0.0144 -0.0132 

95 0.0568 0.0222 0.0225 

  

The square root of the mean square error between the ideal and computed using multipliers is 0.1188 while 

that between multipliers and CORDIC is 0.000470. The ratio is 252.71, which again shows that CORDIC 

introduces minimal error compared to the error of the algorithm. The theoretical error between ideal 

transform and transform using multipliers is 0.1076, which is again of the same order as the value obtained 

from simulation. The theoretical CORDIC error is 0.000484, which matches closely with simulation. 

 

V. CASE STUDY: APPLICATION IN A COMPUTER AIDED TOMOGRAPHIC SYSTEM: 

The CORDIC based Hankel transform has been used in a complete tomographic image reconstruction system. 

Such systems are of use in medical fields to see the internal cross-section of an organ and also in industry to 

view the internal cross-section of a machine part. The method used is of [1] which is briefly outlined below : 

The input to the method is 1-d projections of a cross section at a certain distance in the z-axis taken at 

different angles from 0 to 180
°
 by parallel beam of x-rays. For our case, they have been generated synthetically 

using the radon transform (MATLAB‟s radon function used). Once the projections are obtained, they are 

Fourier transformed to obtain slices of the transformed image by the projection slice theorem. It is denoted as 
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F(r,θ) (r and θ are the radial and angular variable in the transform domain respectively). Now, F(r,θ) being 

periodic in θ with 2π can be broken into Fourier series in θ as : 
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where the Fourier series coefficient Fn(r) is given as ,  
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The reconstructed image in polar domain f(ρ,Φ) also being periodic in Φ with period 2π can be expanded into 

Fourier series in Φ as : 
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Now, the inverse Fourier transform of each term in the Fourier series of (12) equals the corresponding term in 

the Fourier series of (14) and that by the definition of Hankel transform, fn(ρ) is the nth order Hankel 

transform of Fn(r). It is expressed as : 
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                                   (16)   

 

The Hankel transform is solved by (1-7), where CORDIC algorithm is used to solve (7), which is the most 

time consuming operation. The reconstructed image obtained is in polar domain. It is converted to Cartesian 

domain and the missing pixels‟ intensity values are calculated by bilinear interpolation [23]. The factor π/2 

comes in (14) in order to get the proper form of Hankel transform equation (16). It results in the final image 

being rotated counter-clockwise by π/2. 

The method has been used to recreate a 2-d cross section of human head. The head cross section model used 

is the Shepp and Logan head phantom [24]. The reconstruction using Bessel functions (16) , (1-7) using 

multipliers and (1-7) using CORDIC algorithm are shown in Fig. 6a, Fig. 6b and Fig. 6c respectively. The bit 

length is taken to be 40 bit (16 bits before the decimal and 24 bits after; 2‟s complement representation used) 

and the number of stages in CORDIC algorithm is taken as 12.The number of slices is taken as 128. The 

number of points in each slice is 256. The number of points of the transformed variable (ρ) for each Φ is 256, 

the number of terms in the Fourier series is 128 and number of summation terms in (7) is 64. Δρ=0.1047; 

Δθ=π/128; Δr=0.1; Δη=0.2454, 
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Fig. 6a Reconstruction using Bessel functions (modified Shepp Logan head phantom) 

 
Fig. 6b Reconstruction using multipliers (modified Shepp Logan head phantom) 

 
Fig. 6c Reconstruction using CORDIC (modified Shepp Logan head phantom) 

The PSNR between Fig. 6a and Fig. 6b is 32.17 dB and between Fig. 6b and Fig. 6c is 56.66 dB (very close 

match for the latter). It shows that CORDIC introduces negligible error compared to [5]‟s inherent error, 

while giving computation time improvement.  If better quality is desired then it can be obtained by improving 

the contrast (e.g. histogram equalization) that takes negligible overhead.  

For another example, square images (images with sharp edges) have been reconstructed. Images with 

discontinuities are present in various machine parts where tomographic image reconstruction may be used. 

The reconstruction using Bessel function (16) , (1-7) using multipliers and (1-7) using CORDIC are shown in 

Fig. 7a, Fig. 7b and Fig. 7c respectively. The parameter values are same as before. 
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Fig. 7a Reconstruction using Bessel functions (2 squares) 

 

 
Fig. 7b Reconstruction using multipliers (2 squares) 

 

 

 
Fig. 7c Reconstruction using CORDIC (2 squares) 

 

The PSNR between Fig.7a and Fig. 7b is 35.66 dB while that between Fig.7b and Fig.7c is 55.42 dB, once 

again illustrating the proposed methodology.  

For 3-d reconstructions, multiple Hankel transforms of a given order are calculated for the 3
rd

 dimension. The 

total fractional contribution of the CORDIC error remains same. The proposed method can be applied to the 

reconstructions in [25]. 

It is interesting to analyze the effect of noisy projections on the reconstructions. Noise in projections comes 

from lateral spreading of X-ray beam; small misalignment between the source and the detector. This has been 

modeled as zero mean additive white Gaussian noise. It has been found that for standard deviations upto 0.03, 

acceptable reconstructions are obtained with minimum error introduction by CORDIC algorithm as mentioned 

previously. The noise is smeared in concentric circles about the image (because of the smearing nature present 

in the backprojection operation). The results for the Shepp and Logan head phantom and squares for different 

noise standard deviations are shown in Fig. 8 and Fig. 9. 
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Fig. 8 a. Reconstruction of modified Shepp Logan head phantom in presence of zero mean additive 

white Gaussian noise having standard deviation 0.03. 

 

The PSNR between Fig. 8 a and when there is no input noise is 35.35 dB. 

 

 
Fig. 8 b. Reconstruction of two squares in presence of zero mean additive white Gaussian noise having 

standard deviation 0.03. 

 

The PSNR between Fig. 8 b and when there is no input noise is 33.55 dB. 

 
 

Fig. 9 a. Reconstruction of modified Shepp Logan head phantom in presence of zero mean additive 

white Gaussian noise having standard deviation 0.01. 

 

The PSNR between Fig. 9 a and when there is no input noise is 45.09 dB. 
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Fig. 9 b. Reconstruction of two squares   in presence of zero mean additive white Gaussian noise 

having standard deviation 0.01. 

 

The PSNR between Fig. 9 b and when there is no input noise is 42.31 dB.  

It is seen that with noise standard deviations upto 0.03, PSNR values > 30 dB is obtained. 

The computational cost has been compared with some state-of-the-art works in Table III. 

 

 

Table III : Comparison with state-of-the-art 

Work Computational cost( real 

multiplications) 

[5]  2W.C.(4N
”
).log2(4N

”
)+2W.C.N

”2
 

[9] 2W.C.(4N
”
).log2(4N

”
)+2W.C.N

”2
 

[13] 2W.C.(4N
”
).log2(4N

”
)+2W.C.N

”2
 

[17] 4.W.C.N
”2

 

This work  2W.C.(4N
”
).log2(4N

”
)+2.12.C.N

”2 

 

In Table III, W is the word length (40-bit), C is the word-length-adder delay and N
”
 is the number of samples 

of the transformed variable (128). The CORDIC used is a 12 stage one (increasing the number of stages will 

only improve its error). From Table III, it is seen that by use of CORDIC, for the above parameters, 54.63 % 

savings in computation cost is obtained over the state-of-the-art with negligible error introduction. For the 

image reconstruction system, the time savings is 35.00 % (for the chosen parameter values given in Section-

V) with same negligible error introduction. The computation time for FFT can be reduced by employing 

higher-radix FFTs. 

 

VI. CONCLUSION: 

Several applications require fast computation of Hankel transforms. A method and architecture for fast 

computation of Hankel transforms using the CORDIC algorithm is presented (based on a filtered back-

projection method). The architecture is fast compared to that used by multipliers while the error contribution 

is minimal. Further since all the components are scaled by the same factor, the components need not be 

multiplied by the inverse CORDIC scale factor which again reduces computation time. Hence the proposed 

architecture is very much suitable for real time applications. Theoretical results have been substantiated by 

simulations. Real life application of the proposed methodology has been presented showing good 

correspondence to theory.    
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